p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22.90C25, C23.134C24, C42.578C23, C24.507C23, C4.792+ (1+4), D4⋊8(C2×Q8), (D4×Q8)⋊19C2, (C2×D4)⋊23Q8, C23⋊2(C2×Q8), D4○2(C22⋊Q8), C4⋊Q8⋊92C22, D4⋊3Q8⋊20C2, (C2×C4).80C24, (C4×Q8)⋊44C22, C23⋊2Q8⋊6C2, C4.53(C22×Q8), C2.15(Q8×C23), C4⋊C4.296C23, C22⋊Q8⋊33C22, (C2×D4).505C23, (C4×D4).232C22, (C2×Q8).287C23, C42.C2⋊15C22, (C22×Q8)⋊33C22, C22.11(C22×Q8), C22⋊C4.100C23, (C2×C42).944C22, (C23×C4).611C22, (C22×C4).362C23, C2.33(C2×2+ (1+4)), C2.25(C2.C25), C22.11C24.10C2, (C22×D4).599C22, C23.37C23⋊35C2, C42⋊C2.225C22, C23.41C23⋊15C2, (C2×C4)⋊3(C2×Q8), (C2×C4×D4).90C2, (C2×D4)○(C22⋊Q8), (C2×C4⋊C4)⋊74C22, (C2×C22⋊Q8)⋊77C2, (C2×C22⋊C4).382C22, SmallGroup(128,2233)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 788 in 550 conjugacy classes, 430 normal (16 characteristic)
C1, C2 [×3], C2 [×10], C4 [×6], C4 [×23], C22, C22 [×10], C22 [×18], C2×C4 [×2], C2×C4 [×28], C2×C4 [×33], D4 [×16], Q8 [×20], C23, C23 [×12], C23 [×4], C42 [×12], C22⋊C4 [×32], C4⋊C4 [×60], C22×C4 [×3], C22×C4 [×26], C22×C4 [×4], C2×D4 [×12], C2×Q8 [×16], C2×Q8 [×8], C24 [×2], C2×C42, C2×C22⋊C4 [×10], C2×C4⋊C4, C2×C4⋊C4 [×12], C42⋊C2 [×4], C4×D4 [×24], C4×Q8 [×8], C22⋊Q8 [×64], C42.C2 [×12], C4⋊Q8 [×12], C23×C4 [×2], C22×D4, C22×Q8 [×4], C2×C4×D4, C22.11C24 [×2], C2×C22⋊Q8 [×4], C23.37C23 [×2], C23⋊2Q8 [×4], C23.41C23 [×2], D4×Q8 [×4], D4⋊3Q8 [×12], C22.90C25
Quotients:
C1, C2 [×31], C22 [×155], Q8 [×8], C23 [×155], C2×Q8 [×28], C24 [×31], C22×Q8 [×14], 2+ (1+4) [×2], C25, Q8×C23, C2×2+ (1+4), C2.C25, C22.90C25
Generators and relations
G = < a,b,c,d,e,f,g | a2=b2=d2=f2=g2=1, c2=e2=b, ab=ba, dcd=gcg=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
(1 27)(2 28)(3 25)(4 26)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6)(2 32)(3 8)(4 30)(5 26)(7 28)(9 23)(10 18)(11 21)(12 20)(13 19)(14 22)(15 17)(16 24)(25 29)(27 31)
(1 11 3 9)(2 10 4 12)(5 22 7 24)(6 21 8 23)(13 25 15 27)(14 28 16 26)(17 31 19 29)(18 30 20 32)
(5 30)(6 31)(7 32)(8 29)(17 23)(18 24)(19 21)(20 22)
(1 3)(2 26)(4 28)(5 32)(6 8)(7 30)(9 11)(10 14)(12 16)(13 15)(17 19)(18 22)(20 24)(21 23)(25 27)(29 31)
G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,32)(3,8)(4,30)(5,26)(7,28)(9,23)(10,18)(11,21)(12,20)(13,19)(14,22)(15,17)(16,24)(25,29)(27,31), (1,11,3,9)(2,10,4,12)(5,22,7,24)(6,21,8,23)(13,25,15,27)(14,28,16,26)(17,31,19,29)(18,30,20,32), (5,30)(6,31)(7,32)(8,29)(17,23)(18,24)(19,21)(20,22), (1,3)(2,26)(4,28)(5,32)(6,8)(7,30)(9,11)(10,14)(12,16)(13,15)(17,19)(18,22)(20,24)(21,23)(25,27)(29,31)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6)(2,32)(3,8)(4,30)(5,26)(7,28)(9,23)(10,18)(11,21)(12,20)(13,19)(14,22)(15,17)(16,24)(25,29)(27,31), (1,11,3,9)(2,10,4,12)(5,22,7,24)(6,21,8,23)(13,25,15,27)(14,28,16,26)(17,31,19,29)(18,30,20,32), (5,30)(6,31)(7,32)(8,29)(17,23)(18,24)(19,21)(20,22), (1,3)(2,26)(4,28)(5,32)(6,8)(7,30)(9,11)(10,14)(12,16)(13,15)(17,19)(18,22)(20,24)(21,23)(25,27)(29,31) );
G=PermutationGroup([(1,27),(2,28),(3,25),(4,26),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6),(2,32),(3,8),(4,30),(5,26),(7,28),(9,23),(10,18),(11,21),(12,20),(13,19),(14,22),(15,17),(16,24),(25,29),(27,31)], [(1,11,3,9),(2,10,4,12),(5,22,7,24),(6,21,8,23),(13,25,15,27),(14,28,16,26),(17,31,19,29),(18,30,20,32)], [(5,30),(6,31),(7,32),(8,29),(17,23),(18,24),(19,21),(20,22)], [(1,3),(2,26),(4,28),(5,32),(6,8),(7,30),(9,11),(10,14),(12,16),(13,15),(17,19),(18,22),(20,24),(21,23),(25,27),(29,31)])
Matrix representation ►G ⊆ GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 4A | ··· | 4H | 4I | ··· | 4AD |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | Q8 | 2+ (1+4) | C2.C25 |
kernel | C22.90C25 | C2×C4×D4 | C22.11C24 | C2×C22⋊Q8 | C23.37C23 | C23⋊2Q8 | C23.41C23 | D4×Q8 | D4⋊3Q8 | C2×D4 | C4 | C2 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 2 | 4 | 12 | 8 | 2 | 2 |
In GAP, Magma, Sage, TeX
C_2^2._{90}C_2^5
% in TeX
G:=Group("C2^2.90C2^5");
// GroupNames label
G:=SmallGroup(128,2233);
// by ID
G=gap.SmallGroup(128,2233);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,448,477,1430,352,570,1684]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=d^2=f^2=g^2=1,c^2=e^2=b,a*b=b*a,d*c*d=g*c*g=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations